4,394 research outputs found

    Interface relaxation in electrophoretic deposition of polymer chains: Effects of segmental dynamics, molecular weight, and field

    Full text link
    Using different segmental dynamics and relaxation, characteristics of the interface growth is examined in an electrophoretic deposition of polymer chains on a three (2+1) dimensional discrete lattice with a Monte Carlo simulation. Incorporation of faster modes such as crankshaft and reptation movements along with the relatively slow kink-jump dynamics seems crucial in relaxing the interface width. As the continuously released polymer chains are driven (via segmental movements) and deposited, the interface width WW grows with the number of time steps tt, Wtβ,W \propto t^{\beta}, (β0.4\beta \sim 0.4--0.8)0.8), which is followed by its saturation to a steady-state value WsW_s. Stopping the release of additional chains after saturation while continuing the segmental movements relaxes the saturated width to an equilibrium value (WsWrW_s \to W_r). Scaling of the relaxed interface width WrW_r with the driving field EE, WrE1/2W_r \propto E^{-1/2} remains similar to that of the steady-state WsW_s width. In contrast to monotonic increase of the steady-state width WsW_s, the relaxed interface width WrW_r is found to decay (possibly as a stretched exponential) with the molecular weight.Comment: 5 pages, 7 figure

    Possible singlet to triplet pairing transition in NaxCoO2 H2O

    Full text link
    We present precise measurements of the upper critical field (Hc2) in the recently discovered cobalt oxide superconductor. We have found that the critical field has an unusual temperature dependence; namely, there is an abrupt change of the slope of Hc2(T) in a weak field regime. In order to explain this result we have derived and solved Gor'kov equations on a triangular lattice. Our experimental results may be interpreted in terms of the field-induced transition from singlet to triplet superconductivity.Comment: 6 pages, 5 figures, revte

    Charge-ordering, commensurability and metallicity in the phase diagram of layered Na(x)CoO(2)

    Full text link
    The phase diagram of non-hydrated Na(x)CoO(2) has been determined by changing the Na content x using a series of chemical reactions. As x increases from 0.3, the ground state goes from a paramagnetic metal to a charge-ordered insulator (at x=1/2) to a `Curie-Weiss metal' (around 0.70), and finally to a weak-moment magnetically ordered state (x>0.75). The unusual properties of the state at 1/2 (including particle-hole symmetry at low T and enhanced thermal conductivity) are described. The strong coupling between the Na ions and the holes is emphasized.Comment: 4 pages with 3 figures, changed conten

    Pressure effects in the triangular layered cobaltites NaxCoO2

    Full text link
    We have measured transport properties as a function of temperature and pressure up to 30GPa in the NaxCoO2 system. For the x=0.5 sample the transition temperature at 53K increases with pressure, while paradoxically the sample passes from an insulating to a metallic ground state. A similar transition is observed in the x=0.31 sample under pressure. Compression on the x=0.75 sample transforms the sample from a metallic to an insulating state. We discuss our results in terms of interactions between band structure effects and Na+ order.Comment: 18 pages, 5 figure
    corecore